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The principle of large-scale anisotropy due to small-scale layering is applied to 
thermal convection. The motion takes place in a bounded porous medium heated from 
below. The medium is periodically layered with respect to permeability and therma,l 
conductivity. The onset of convection as well as slightly supercritical convect,ion 
are investigated. Anisotropic modelling proves useful even for small numbers of 
layers as long as the motion is of ‘large-scale convection’ type (Masuoka et al. 1978). 
The modelling always fails for motion of ‘local convection ’ type. 

1. Introduction 
A correspondence between layering and anisotropy is encountered in a broad class 

of physical problems. Most familiar, perhaps, is the basic anisotropy effect of layering 
in electric conduction (series and parallel arrangements of resistors). Also, elastic and 
electromagnetic waves in layered media propagate as if the media were anisotropic 
when the wavelength is sufficiently large compared to the layer thicknesses (see e.g. 
Brekhovskikh 1960, p. 79). Heat conduction and other transport phenomena may 
also exhibit these features. 

A layered porous medium can, under certain circumstances, be represented by an 
anisotropic model medium. For example, Marcus & Evenson (1961) showed by 
considering uniform flows (i.e. uniform flows in each layer) that  the set of scalar layer 
permeabilities of a multilayered medium is macroscopically equivalent to an average 
permeability tensor (see also Bear 1972, p. 157; Wooding 1976). Anisotropic modelling 
has also been applied to hydrodynamic dispersion (Moranville, Kessler & Greenkorn 
1977a, b ;  Tyvand 1980) for the case of uniform flows through porous media. 

The anisotropic representation is also relevant, however, for a curved flow in a 
layered porous medium when the length scale of the flow is sufficiently large compared 
to the layer thicknesses. The primary purpose of the present work is to investigate the 
ability of an average anisotropic model to represent curved flows in layered systems. 
As a mathematically convenient and illustrative family of flows, free thermal con- 
vection is considered. This has considerable geophysical and technical importance 
(see Combarnous & Bories 1975; Cheng 1978). Layering in both permeability and 
thermal conductivity are investigated. 

The criterion for onset of two-dimensional convection in a porous medium com- 
XI 
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posed of two layers has recently been studied by Masuoka et al. (1978), who also 
investigated supercritical flow patterns using a finite-difference method. McKibbin & 
O’Sullivan (1980) developed a general method for analysing a medium composed of 
an arbitrary number of separately homogeneous layers and this method is followed 
here. In  this paper some aspects of nonlinear convection are also studied, following 
McKibbin & O’Sullivan ( 198 1).  

It was found, in the last three studies mentioned, that convection tends to localize 
in those layers which have greater permeability (see also Ribando & Torrance 1976). 
This ‘local’ convection is also associated with motion of a fluid whose viscosity 
decreases wihh increasing temperature - relatively large flow rates occur near the hot 
bottom of the system (see e.g. Zebib & Kassoy 1977). In  a homogeneous layer saturated 
with a constant-viscosity fluid, however, local convection does not occur, the flow 
being of ‘large-scale’ type. Among other relevant works on Convection in non- 
homogeneous porous media are those by Donaldson (1962) and Green & Freehill 
(1969). 

The theory of convection in homogeneous anisotropic porous media was first 
considered by Castinel & Combarnous (1974) and Epherre (1975), who found onset 
criteria for systems which have an impermeable upper boundary. Kvernvold & 
Tyvand (1 979) extended these analyses to  supercritical finite-amplitude convection. 
Wooding (1976) presented criteria for onset of two- and three-dimensional convection 
in a layer with permeability that is anisotropic and which may also vary with depth - 
both impermeable and constant-pressure upper-boundary conditions were treated. 

The present study extends the theory of convection in layered and anisotropic 
porous media and provides a link between these two fields. 

2. The multilayered porous medium 
As previously analysed by McKibbin & O’Sullivan (1980, 1981)) the mnltilayered 

system, of total thickness d ,  is assumed to comprise N separately homogeneous 
isotropic layers. Beneath layer 1 the system is bounded by an impermeable isothermal 
surface at temperature Ta + AT, where T, is the temperature of the isothermal top 
surface (above layer N )  which is considered to be either impermeable (closed top) or 
at constant pressure (open top). The porous material contained in layer i, of thickness 
di, has permeability K i ,  and, when saturated, thermal conductivity ki. Within each 
layer the usual equations of conservation of mass, momentum (Darcy’s law) and 
energy hold. Appropriate continuity considerations determine boundary conditions 
at the interfaces between the layers. 

The conduction solution for the temperature Ts is a piecewise linear function of 
the vertical co-ordinate z, given by 

This distribution corresponds to a temperature drop A q  across each layer given by 
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It should be noted that, when the layer conductivities are all the same (i.e. ki = k,, 
i = 2,3, ..., N )  the conduction-temperature distribution is the same as that for a 
homogeneous layer, viz. T, = Ta+AT(I - x / d )  for 0 < x < d,  with a temperature 
drop across each layer proportional to the fraction Ti( = d i /d  ) of the total thickness 
that the layer occupies, namely A% = ri AT. 

In  the general case, a Rayleigh number for each layer, based on the layer thickness 
di and the layer temperature drop A% is given by 

where pa, c, a and Y are respectively the density a t  temperature T,, the thermal- 
expansion coefficient, the specific heat and the kinematic viscosity of the saturating 
fluid, and g is the acceleration due to gravity. 

Each layer Rayleigh number may be related to that for the bottom stratum, layer 1, 
bv 

(2.4) 

The criterion for onset of convection in such a multilayered system becomes an 
eigeiivalue problem which is solved (see McKibbin et O'Sullivan 1980) for the para- 
meter R defined by 

(2.5) 
Sd R, pagcaK,dAT 
s1 d, 47l2 47r2Vk1 ' 

R=--= 

Calculation of the critical value R = R, enables a comparison to be made of the 
temperature difference required for onset of convection in the system, with that for 
an infinite layer which is composed completely of the material of layer 1 for the 
stratified case. 

In order that comparison may be made with an 'equivalent' homogeneous aniso- 
tropic layer, the effective anisotropy of the stratified system must be found. By 
considering uniform flows parallel and perpendicular to the layering, average hori- 
zontal and vertical permeabilities and conductivities may be calculated. These are 

where subscripts H, V denote horizontal and vertical parameters respectively, and 
ri = di /d .  A model of alternating layers will be the best analogy for a homogeneous 
medium. In what follows, then, the total number of layers N is even; a number +N of 
superposed pairs of layers is considered, each pair being of total thickness 2dlN and 
comprising two layers of thicknesses r ( 2 d / N ) ,  ( I  - r )  ( 2 d / N ) ,  with permeabilities Kl, 
pKl and conductivit,ies I%,, yk,  respectively. Average horizontal and vertical per- 
meabilities and conductivities for the system are, using (2.6)) given by 
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Measures of effective anisotropy in permeability and conductivity are then given 
by the parameters 5, 7 respectively, where 

Note that both 5, 7 > 1 i.e. horizontally layered systems correspond to anisotropy 
only of a form where horizontal are larger than vertical quantities. Also the choice of 
N even leaves 5,?1 independent of N (for an odd number of layers, 6 and 7 depend on 
N - however as N becomes large these values converge towards those in (2.8)). 

Suitable choices of r ,  /? and y enable any desired values of 5, 7 > 1 to be obtained, 
although it should be noted that to each value of 5, for a given r ,  there correspond 
two values of p, namely p+ (the larger value) and p- = l/P+. These are given by 

There are similarly two possible values of y(y+,y- = l/y+) for each chosen 7. 
Towards the limit as 5, 7 -+ co, 

p++- t y++ - 7 
r(1 - r ) '  r (1- r ) '  

with 
r(1-r) r(1-r) 

9 Y--+-. 

For given 5 , ~  > 1, there are thus four possible combinations of values of p, y that 
may be chosen. For most of the cases studied below where one of 5 and 7 is unity, the 
smaller value y- or p- respectively is chosen. For a closed-top system, where symmetry 
is preserved via the similar upper and lower boundary conditions, there will be no 
qualitative difference between subsequently calculated flows using either of the 
choices. For open-top systems, this symmetry is not preserved, and for small numbers 
of layers, the different selections give slightly different results. As N becomes large, 
however, the distinction tends to disappear. 

A Rayleigh number R" for the system may be defined in terms of the effective 
vertical permeability and conductivity, as 

P - 5  7 

pa gccxKv dAT 
4n2vkV * 

R" = 

Upon using (2.7), 

(2.10) 

(2.11) 

where R is given by (2.5). The critical value of this Rayleigh number is denoted RZ, 
given by 

(2.12) 

where R, is the critical value of R. For the two-dimensional flows to be considered, 
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RZ is also a function of the non-dimensional cell width L. It takes its minimum value 
R, for a cell width L = L,; these values correspond to the critical Rayleigh number 
and cell width for onset of convection in a system of infinite horizontal extent. 

A measure of the amount of heat transferred vertically through the system is 
provided by the non-dimensional Nusselt number Nu. A first approximation for N u ,  
valid for slightly supercritical convection, is given by 

(2.13) 

The parameter u may be calculated by the method given in McKibbin & O'Sullivan 
(1981),  where it was shown that for a general multilayered system, and also for a 
single layer with an open top, u varies with cell width L. 

3. The homogeneous anisotropic layer 
Some results for a homogeneous anisotropic layer with a closed top are outlined in 

Kvernvold & Tyvand (1979).  For a two-dimensional convection pattern with cell 
width L, the critical Rayleigh number R$ (where R* is defined by (2.10)) is 

The minimum value with respect to variation of L is given when 

L = Lc = (67)*, (3.2) 

RZ = RF min = + ( ~ / C ) ' I ~ ,  (3.3) 

results which were first found by Epherre (1975).  Note that L, > 1 in the anisotropic 
modelling of layered porous media, since (, 7 > 1 from (2.8).  

A first estimate for the Nusselt number N u  was provided by Kvernvold & Tyvand 
(1979) for the closed-top layer when L = L, (wavenumber 0: = aC in their paper) 
i.e. for a layer of infinite horizontal extent. They found that, for the preferred onset 
cell width L = L, given in (3.2),  the parameter (T in the formula 

N u =  l + ( ~ ( ~ - l ) ,  R" 
Rc min 

(3.4) 

is independent of 6 and 7 and takes the value 2.0. Prom a new analysis made as part 
of the present study, it is found that (T is also independent of the cell width L, i.e. that 
u always takes the value 2.0. So if an anisotropic layer wit,h a closed top is bounded 
laterally by vertical insulating walls, thus providing a constraint on cell width, the 
critical Rayleigh number RZ is given by (3 .  I ) ,  and a first approximation for N u  by 

for all values of 6 ,  and L. This result provides an addition to that given in McKibbin 
& O'Sullivan (1981) - it can now be stated that the coefficient u, which for a multi- 
layered or open-top configuration varies with cell width L, is in fact independent of 
L for a homogeneous layer, isotropic or anisotropic, with a closed top. 

are available for the open-top 
case. From Kvernvold & Tyvand (1979),  however, it ma57 be deduced that RZmin, 

No simple expressions for RZ(L), RZmin, L, and 
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0.01 0.02 0.05 0.1 0.2 0.5 1.0 
10.6 6.16 3.18 2.04 1.38 0.895 0.686 

617 
R c m i n  

1.30 1.33 1.35 1.36 1.37 1.36 1.35 
U 2.94 3.00 2.95 2.80 2.55 2.19 1.95 
Lol(t7)i 

1.0 2.0 5.0 10.0 20.0 50.0 100*0 
0.686 0.553 0.442 0.388 0.349 0.314 0.296 

617 
Rcmin 

1.35 1.33 1.29 1.24 1.20 1.14 1.11 
U 1.95 1.80 1.75 1.79 1.87 1.95 1.98 
LCl(t7)* 

TABLE 1. Some values of R:min, Lc/(tv)i and corresponding (T for a homogeneous anisotropic 
layer with an open top. All depend on 6 and 7 in the ratio 617 only. 

L,/([y)* and CT all depend on 6 and y in the ratio c/?) only - the different kinematic 
upper boundary condition does not alter this aspect of their analysis. Numerical 
calculations following an analysis similar to  that for the closed top case verifies this. 
Some values of RZmin, L,/(&)i  and corresponding CT for the open-top case are shown 
in table 1.  (Wooding (1976) gave some values of RZmin and L, for the special case 
7 = 1. )  It should be noted that, unlike the closed-top case, CT varies with cell width L 
also. 

If the homogeneous anisotropic porous layer is to be a suitable analogue for a 
multilayered system with a closed top, then as N becomes large, the values of R,*(L), 
L, and RZmin should become close to those values given in (3.1)-(3.31, and a(L) close 
to the constant value 2.0. Similarly, for the open-top case, convergence to those values 
for a single anisotropic layer is required. 

4. Results 
I n  the homogeneous anisotropic model, convection occurs throughout the whole 

layer; using the distinction made by Masuoka et al. (1978) it can be said that ‘large- 
scale’ convection takes place. However, as noted by those authors and also by 
McKibbin & O’Sullivan (1980), for large non-homogeneities in permeability or con- 
ductivity in multilayered systems, it is possible that convection may begin in only 
some of the layers (those with larger permeability or smaller conductivity). Such 
motion is termed ‘local’ convection, and is almost confined to these active layers. 
Owing to continuity, however, some motion also takes place in the passive layers of 
small permeability or large conductivity. 

If the multilayered system is to be modelled successfully by an anisotropic analogue, 
the local-convection type of motion should not appear as the number N of layers 
becomes large. Now, for most two-layer systems there is a tendency for local convec- 
tion to occur as the ratios p ,  y become much different from unity (these ratios corres- 
pond to the l/d, l / y  of Masuoka et aZ.). An example of this is demonstrated in figure 
1 (a), which shows values of R: vus. L for the closed-top case /3 = 0.172, y = 1.0 where 
all layer depths are equal ( r  = 0.5), corresponding to effective anisotropy = 2.0, 

= 1.0. For N = 2, the cell width L,  (where 8: = R:min) is significantly smaller 
than for N 2 4, when the values of L, are close to that for the corresponding homo- 
geneous anisotropic layer. As N becomes larger, the values of RZ quickly approach 
the homogeneous values. Similarly, the values of parameter IT for each L approach 
the value 2.0 as N becomes large - this is shown in figure 1 (b ) .  As explained in McKibbin 
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R ?  

0.8 

0.7 

0 1 L 2 

I 

Homogeneous 

Two cells 
(values for N > 2 
not shown for clarity) 

0 

S e e  cells 

0 1 L 2 

FIGURE 1. Variation of critical Rayleigli number RZ and slope parameter (r with cell width L 
for the case 6 = 2.0, 7 = 1.0, closed top, for number of layers N = 2 ,  4, 6, 8, 10 of equal depth 
(T = 0.5) and for an equivalcnt homogeneoiis anisotropic layer. ( u )  R: 1)s. L ;  ( b )  CT vs. 5. 

& O’Sullivan (1981) the values of v for a layered system become zero a t  the value of L 
above which a two-cell flow becomes preferred. For N 3 4, values of (T are given for a 
single cell only - those for larger numbers of cells may be deduced by suitable scaling 
of the graphs for a single cell. Streamlines for the cases N = 2, 4, 6 when L = L, are 
shown in figure 2 ,  where comparison may be made with the convection pattern a t  
onset in the homogeneous layer. The local ( N  = 2 )  and large-scale convection associa- 
ted with the different numbers of layers is clearly seen. 

By increasing either of the parameters 5 or 7 sufficiently, it can be shown that local 
convection will occur for both N = 2 and for a larger number of layers. For example, 
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(@)- 
I I 

N =  2 
I I 

N = 4  

N = 6  Homogeneous 

FIGURE 2.  Streamlines of single cells at  onset of convection in a laterally unbounded system for 
= 2.0, q = 1.0, closed top, r = 0.5, for N = 2 (R:m,n = 0.701, L, = 0-847, (T = 1-07), 

N = 4 (0.765, 1.15, 1-6i), N = 6 (0.748, 1.17,  1.85) and a homogeneous layer (0.729, 1-19, 2-00). 

if all layers have equal thickness and conductivity, local convection occurs when 
,8 = 0.01 for both N = 2 and N = 4. Figure 3 gives the values of R,* us. L for this case, 
while figure 4 shows streamlines for N = 2, 4, 6 and the homogeneous layer when 
L = L,, all configurations having effective permeability anisotropy 6 = 25.5. It will 
be shown that local convection is associated with still larger numbers of layers as is 
increased further (see § 6 below). 

As noted by both Masuoka et al. (1978) and McKibbin & O’Sullivan (1980, 1981), 
some layered configurations (although only in certain small parameter ranges) result 
in two local minina for R, (and hence R:) as a function of cell width L. In  particular, 
for some cases the smaller of the two minima corresponds to local convection while 
the larger corresponds to large-scale convection. Again taking 7 = 1.0 (all layers of 
equal conductivity) the two-layer closed-top system where r = 0.2, ,8 = 0.025 (giving 
< = 7 . 1 , ~  = 1.0) exhibits such behaviour. For N = 4,6, ... however, there is only one 
minimum for R,*(L), this corresponding to large-scale convection. Figure 5 shows how 
the preference in this configuration for local convection is associated only with the 
two-layer case, and vanishes for larger numbers of layers. 

Systems with an open top (i.e. a constant-pressure upper-boundary condition) 
exhibit similar behaviour to those examples given above, as also do multilayered 
media where the permeability is uniform throughout, but conductivity varies from 
layer to layer. An example incorporating both types is shown in figure 6, where layer 
depths and permeabilities are all equal ( r  = 0.5, /? = 6 = 1.0) and each system has an 
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0.8 
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0.2 

0 1 2 3 4 
L 

FIGURE 3. Variation of R,* with L for the case 6 = 25.5, 7 = 1.0, closed top, for 
layers of equal depth (r  = 0.5), and for a homogeneous layer. 

open top. Figure 6(a)  shows R: us. L for y = y- = 0.0556 and figure 6(b) for 
y = y+ = 18-0 - both values of y give the same effective conductivity anisotropy 
y = 5.0, but, as mentioned earlier, symmetry is not preserved because of the different 
types of upper- and lower-boundary conditions. The effect is seen only with the smaller 
numbers of layers, and, as N becomes large, the distinction tends to disappear as both 
systems model the homogeneous layer better. Streamlines a t  onset (when L = A,) 
for N = 2 , 6  are shown for both values of y in figure 7, and may there be compared 
with the homogeneous-layer flow pattern. 

5.  Convergence 
As shown by the examples above, for given 5 and y the homogeneous anisotropic 

layer models a layered system increasingly better as N becomes larger. Similarly, for 
a given number of layers N it is of interest to find out how well a homogeneous aniso- 
tropic medium models the layered system for various equivalent values of 5 and y. 
For the representative case N = 8, r = 0.5, values of RZmin and L, were calculated 
for 5, y = 1.0,2.0,5.0,10.0 and compared with the homogeneous values. Table 2 gives 
results for a closed-top system (using ,8 = p-, y = y-) and table 3 gives those for the 
open-top case (using p = pf, y = y f ) .  For each pair (t, y), the homogeneous value, the 
layered-system value and the percentage difference are given. As can be seen, con- 
vergence is generally better for 6 than for y, especially for RZmin. This is related to the 
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- - . . . .  

0 

N = 4  N = 6  

Homogeneous 

FIGURE 4. Streamlines at onset of convection in a laterally unbounded system for 6 = 25.5, 
7 = 1.0, closed top, r = 0.5 for N = 2 (R:m,n = 0.065, L, = 0.601, cr = 0.53), N = 4 (0.202, 
0.422, 0.26), N = 6 (0.345, 1.57, 1.34) and a homogeneous layer (0.359, 2.25, 2.00). 

1-2 

0.4 
0 1 L 2 

FIGURE 5. Variation of R: with L for the case 6 = 7.1, 7 = 1.0, = 0.2, 
closed top (giving two minima for N = 2). 
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(a 1 

1 2 L 3 4 

0 1 2 L  3 4 

FIGURE 6. Variation of R,* with L for the open-top case 5 = 1.0, 7 = 5.0, r = 0.5. 
(a) y = 7- = 0.0556; (b )  y = y+ = 18.0. 
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I 

. .  
0 n 4.2 2n 

k 

FIGURE 2. Normalized Fourier trknsforms, [Fl(kz)~/&,ax~ and ~ ~ ( k z ) ~ / ~ F ! m a x [ ,  of af i /ax  for the 
cylindrical ridgefl(x) (solid) and the top-hat ridgef,(x) (dotted) respectively. Vertical lines denote 
~ ~ ( ~ z ) ~ / & , a x ~  for k;, n = 1 , 2 , 3 ,  . . . , for (a )  Ro = 0.1, H = 10 and (b) Ro = 0.1, H = 1. 

2 shows that as H decreases, the largest-amplitude modes are eliminated. A similar 
trend for the low wavenumbers is obtained by fixing H and decreasing Ro. This 
suggests that  for small Ro, in a fluid of finite depth, or for small H ,  the inertial waves 
are weak, as shown by Stewartson & Cheng (1979). 

Qualitative comparisons are made of observed three-dimensional surfaces of 
constant phase and those predicted by Lighthill's theory. The far-field, three- 
dimensional surfaces of constant phase, are given in parametric form by 

1 1 - Ro2 ki 
x=- 1 + k i  

y = " k  

kz "[ k z + k i  ' 

1 - Ro2ki 
' 

0 (I-Ro2k;)t 
z = f -  

Rok, ( k z + k i ) ?  ' 

(2.16a) 

(2.16b) 

(2.16 c) 
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5 1.0 2.0 5.0 10.0 

7 Ro*m!n L c  Rc*min L c  R:min Lc R,*min Lo 

--&- 

1.000 1.000 0.729 1.189 0.523 1.495 0.433 1.778 
1.0 1.000 1.000 0.740 1.182 0.534 1.461 0.439 1.891 

0.0 0.0 + 1.6 -0 .6  +2.1 -2.3 + 1.4 -4.9 

1.457 1.189 1.000 1.414 0.666 1.778 0.524 2.115 
2.0 1.475 1.169 1.069 1.398 0.731 1.762 0.580 2.090 

+1.2 - 1.7 $6.9 - 1.2 +9.8 -0.9 + 10.7 -1.1 

2.618 1.495 1.666 1.778 1.000 2.236 0.729 2.659 
5.0 2,630 1.412 1.793 1.717 1.118 2.199 0.827 2.632 

+0 '5 -5.5 $7'6 -3.4 +11'8 -1.7 $13.4 -1.0 

4,331 1.778 2.618 2.115 1.457 2.659 1-000 3.162 
10.0 4.248 1-573 2.780 1.971 1.621 2.575 1.135 3.106 

-1 .9  -11 .5  $6.2 -6.8 + 11.3 -3.2 + 13.5 - 1.8 

TABLE 2. Comparison of the values of and L, for an 8-layer model with a closed top and 
layers of equal depth ( r  = 0.5), with those values for an equivalent homogeneous anisotropic 
layer. For each pair of values (6 ,  7) the values given are (i) homogeneous value, (ii) layered- 
system value, (iii) percentage difference ((ii)/(i) - 1) x 100. The ratios /I = /I- and y = y- 
are used. 

5 

7 

1.0 

2.0 

5.0 

10.0 

1 *o 2.0 5.0 10-0 
&&-& 

Rc*mio Lc Rgmin Lo Ro*min L c  R,*min L c  
0.686 1.351 0.553 1.581 0.442 1.922 0.388 2.209 
0.686 1.351 0.554 1.533 0.439 1.854 0.382 2.108 
0.0 0.0 +0*2 -3.0 -0.7 -3.6 - 1.6 -.4.6 

0.895 1.619 0.686 1.910 0.520 2.349 0.442 2.719 
0.995 1.576 0.787 1.802 0.593 2.210 0.500 2.564 

f11.2 -2.7 +14.7 -5.7 +14.0 -5.9 +13'0 -5.7 

1.379 2.042 0.985 2.426 0.686 3.020 0.553 3.536 
1.595 1.964 1.198 2.257 0.833 2.807 0,664 3.296 

f 15.7 -3.8 +21'6 -7.0 +21.3 -7 .1  +20.0 -6.8 

2.041 2.422 1.379 2.889 0.895 3.622 0.686 4.271 
2.378 2'289 1.714 2.651 1.117 3.338 0.849 3.954 + 16.5 -5 .5 +24.3 -8.2 +24.9 -7.8 +23.6 -7.4 

TABLE 3. As for table 2, but for an open top. The ratios /3 = /I+ and y = y+ a.re used. 

matching with the anisotropic model. Now, in the 'alternating-layer ' model, all the 
Ri will be equal if 

An example where this is so is given by p = 0.05, y = 1.0, r = 0.183 (giving 5 = 3.7, 
7 = 1.0)) results for which are given in figures 8 and 9 for a closed-top system. Figure 8 
shows variation of RZ with L, and certainly shows a lack of tendency towards local 
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1.2 

R: 

0.8 

0.4 
0 1 L 2 

FIGURE 8. Variation of Rf with L for the case f = 3.70, 1 = 1.0, closed top, T = 0.183, 
where all layer Rayleigh numbers Ri are equal. 

N = 6  

N = 4  

Homogeneous 

FIGURE 9. Streamlines at onset of convection in a laterally unbounded system for E = 3.70, 
9 = 1.0, closed top, r = 0.183 for N = 2 (R:n,,n = 0.761, L, = 1.20, fl = 1.87), N = 4 (0.690, 
1.33, 1.25), N = 6 (0.631, 1.37, 1.53) and a homogeneous layer (0.578, 1.39, 2.00). 
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0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

+ 1.3 
+ 1.7 
+ 1.1 
+ 0.3 
- 0.3 

- 4.7 
- 1.7 
+ 1.9 
+ 3.2 
+ 3.6 

- 5.0 
- 0.7 
+ 2.8 
+ 5.7 
+ 8.2 

1.0 1.00 1.13 1.80 
2.0 1.00 1.12 1.78 
5.0 1.00 1.11 1.68 

10.0 1.00 1.09 1.58 
20.0 1.00 1.07 1-48 

-1.4 -18 -42 0 
+ 6 . 5  -1.4 -28 0 
+9.8 +19 + 6.8 0 
+7-5  +20 + 3 3  0 
+4.3 +15 +34 0 

( c )  yo deviation Lo 
-24 -44 - 5 7  0 
-18 -43  -63 0 

-6.2 - 2 1  -71 0 
-0 .6  -9.7 -24 0 
+2*7 -3.5 - 14 0 

( d )  yo deviation u 
-40 - 6 3  -70 0 
-25 -66 -77 0 

-4.0 -36 -84 0 
+1.7 -6 .5 -43 0 
+6.0  +0 .6  -6 .7  0 

(b )  % deviation Rzmin 

0. 1 

3.03 
2.97 
2-73 
2.48 
2.21 

+ 0.6 
+ 0.6 
+ 0.6 
+ 0.5 
+ 0.3 

- 0.2 
- 0.1 
- 0.1 
- 0.1 
- 0.0 

- 1-5 
- 1.6 
- 1.4 
- 1.2 
- 0.9 

0.05 

5.51 
5.38 
4.85 
4.30 
3.70 

+ 2.4 
+ 2.9 
+ 3.2 
+ 3.0 
+ 2.5 

- 1.0 
- 0.9 
- 0.5 
- 0.4 
- 0.2 

- 6.4 
- 7.5 
- 8.1 
- 7.7 
- 6.6 

+ 3.4 
+ 4.7 
+ 5.9 
+ 6.0 
+ 5.6 

- 2.4 
- 1.8 
- 1-1 
- 0.9 
- 0.5 

- 10.5 
- 12.9 
- 15.1 
- 15.4 
- 14.5 

+ 3.4 
+ 5.8 
+ 8.2 
+ 9.1 
+ 9.2 

- 5.0 
- 3.5 
- 2.0 
- 1.4 
- 1.1 

- 14.6 
- 18.1 
- 21.9 
- 23.3 
- 23.3 

L J I c 
V Y 

N = 2  N = 6  

TABLE 4. Values of 5 and percentage differences of R,*min, Lo and u from the homogeneous 
values for two- and six-layer models of alternating layers, with a closed top and uniform con- 
ductivity. For each pair of ratios ( K J K , ,  d i ld?)  values are given for (a) E and the percentage 
differences for ( 6 )  Rz,,,, ( c )  Lo and ( d )  u. On the main diagonal of each table, all layer Rayleigh 
numbers Ri are equal. 

convection for all N ,  in contrast to those examples given in figures 1-7. The stream- 
lines a t  onset when L = L, for N = 2 , 4 , 6  and the homogeneous layer in figure 9 show 
the broad similarity in cell shape. 

The results above suggest that R, = R, may give the best agreement with aniso- 
tropy, a t  least for the case N = 2. Further calculations were carried out to find whether 
this criterion (that all the Ri be equal) has relevance for N = 2 and also for larger 
numbers of layers. Values of RZmin, L, and cr were found for the closed-top cases 
N = 2 and N = 6 when all layer conductivities are equal (Ic,/k, = 1.0) for a variety of 
values of K J K ,  and di/d:, and the differences from the anisotropic values are pre- 
sented in table 4. It shows that, contrary to initial expectation, the percentage 
deviations in RZmin are greatest on the main diagonal, where all the Ri are equal. The 
values of L, tend to improve in agreement with increasing di ld :  (decreasing t) ,  
especially for N = 6, but do not attain optimum values on the main diagonal. The 
factor Kidq/k: thus appears not to be of major relevance. The Iast case given in 
figures 8 and 9 does not therefore give the best agreement with anisotropy -however, 
it  still remains a representative case where local convection does not occur. 
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Streamlines Isotherms 

Streamlines N =  8 Isotherms 

FIGURE 11.  Streamlines and isotherms at onset of convection in a laterally unbounded system 
for 6 = 1.0, 7 = 20.0, closed top, r = 0.5 for N = 2 (R,*m,n = 0.847, L, = 0.60, g = 2.25), 
N = 4 (2.64, 0.41, 0.67), N = 6 (5.54, 0.38, 1.08), N = 8 (6.98, 1.58, 1.79). Corresponding 
values for the equivalent homogeneous layer are (7.49, 2.11, 2.0). 

The onset criterion for local convection in a multilayered system thus seems depen- 
dent on the more active layers in the configuration (i.e. those layers in which greatest 
flow occurs). Figure 4 shows examples of active and passive layers for N = 2 and 4. 
As 6 or 7 becomes large, the most active layer tends to become that which is both most 
centrally situated and for which Ri is largest. Even though the local Rayleigh number 
in the topmost or bottom layer may have an equal Ri, the presence of the horizontal 
boundary causes the layer to become less active than that nearest the centre. (This of 
course does not apply to the case N = 2.) A further example to illustrate this is given 
in figure 10, showing the closed-top case N = 4, where all layers have equal depth and 
permeability - increasing 7 (decreasing y = y-) causes the cell width L,  to decrease as 
convection is confined more and more to layer 2 (although the local Rayleigh number 
R, for the top layer is the same as R2). Both the streamlines and isotherms (departure 
from the conduction temperature distribution) become markedly concentrated in 
layer 2. 

Examination of further examples given in figure 11 helps to broaden some of these 
aspects. The case of equal layer depths and uniform permeability is still considered, 
but N is now varied while thermal anisotropy is fixed (7 = 20.0, y = 0.0128). The 
stabilizing influence of the upper boundary is clearly demonstrated: little recirculation 
takes place in the topmost layer, provided other active layers exist. Local convection 
occurs up to N = 6, where there is recirculation in both the second and fourth layers, 
For N = 8 large-scale convection occurs, with a streamline pattern close to that of the 
homogeneous case. 

The layers will thus never be equally active in the onset of convection as long as 
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there are unequal influences of the top and bottom boundaries on the different layers. 
However the difference in activity between the top/bottom layer and internal layers 
with the same R, is much larger than between the internal layers themselves. These 
boundary effect's also reduce the significance of the factor Kid?/@. 

6. A sufficient condition for onset of local convection in a closed-top system 
Values of R:min presented in the examples above, for a layered system with a closed 

top and with no tendency towards local convection, all exceed the critical value for its 
anisotropic equivalent, namely R: = Rfmin = +(l + (T/()*),. This seems to be a 
general lower limit ; genuinely large-scale convection cannot start for R* below this 
value in a laterally unbounded layered system. On the other hand, local convection 
may occur in any layer for which R, exceeds 4m2; this value of Ri for any i = 1,2,  . . . , N 
is thus an upper limit for local convection, because the possibility of motion outside 
the active layer(s) acts in a destabilizing manner. (For instance the value of R, at 
onset in the case N = 4 of figure 4 is R, = 2 . 5 5 ~ ~ ) .  Analogously, thermal interaction 
between two Newtonian fluid layers, transmitted through a solid layer, is known to  
act in a destabilizing manner (Gershuni & Zhukhovotskii 1976, p. 43). 

Now, when R* reaches the value R* = a( 1 + ( T , J / ( ) ~ ) ~ ,  either R, or R, (representative 
layer Rayleigh numbers for all layers in the alternating-layer configuration) may have 
reached 4n2, so that local convection has started in the system. This gives a condition 
for a class of media for which local convection must be preferred. (It may also occur 
outside this range). A sufficient condition for local convection in the closed top case is 
found by combining the inequality max{R,, R,} > 4772 with the equation R* = 
$( 1 + ( ~ / [ ) 6 ) ~  to arrive at the inequality: 

The two terms in the minimum bracket correspond to the criteria R, > 47r2, R, > 47rz 
respectively. (From (5.1), the two are equal if R, = R,,) 

The condition (6.1) was tested for all the closed-top cases presented so far. It was 
found to be satisfied for the examples in figure 4 for N = 2 and 4, for those in figure 10 
for q 2 10.0and in figure 11 for N = 2 and 4, all of which show convection of local 

It may be easily shown from (6.1) that, if one of p or l / y  -+ 0 while the other remains 
finite, the sufficiency condition is satisfied for any arbitrary N provided the diminishing 
value of ,I3 or l / y  (as the case may be) is taken small enough. This verifies that if 
alternate layers are either completely impermeable or infinitely conducting, local 
convection must occur. 

As mentioned above, the tendency towards local convection in a layered system 
with given 6 , ~  decreases with increasing numbers of layers - this is also now reflected 
in the inequality (6.1). But it is better illustrated by considering the onset criteria for 
varying or 7. As these parameters are increased from the value 1.0, the values of 
RFmin, L, and r~ (the Nusselt-number slope parameter in the formula Nu = 

1 + a(R*/RZ - 1)) for a homogeneous layer are approximated better and better by 

type. 
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FIGURE 12 (a ,  b).  Caption on p. 334. 

larger numbers of strata in the equivalent layered systems. I n  the results given below, 
only the case of equal layer depths in a closed-top system are considered. 

Figure 12 shows the variation of R:min, L, and corresponding u values with 
(p  = p-) when 7 = 1.0, for N = 2 , 4 , 6 , 8 , 1 0  and the homogeneous anisotropic layer. 

For N 3 4 there is a marked transition over a very small range of 6 from large-scale 
convection throughout the whole system t o  local convection within the more per- 
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Homoeeneous 

1 

(C) 
c I 

1 10 E 100 
FIGURE 12. Variation of R:min, L, and corresponding values of u with 6 for the case of uniform 
conductivity (7 = 1.0), closed top and equal layer depths (T  = 0.5). (a )  R:mio vs. 6: ---, 
values of R: where R, = 47P; ( b )  L, vs. 6; (c) u ‘us. 6.  

meable layers, the transition occurring for larger values of as N increases. To the 
right of the transition region for each N, the values of R:,,, decrease in such a way 
that 

pagcaK, dAT [R* . = c min 4n2vk ’ 
is nearly constant i.e. for local convection a Rayleigh number based on the effective 
horizontal permeability has a critical value that is nearly independent of permeability 
ratio 6. 

Figure 12 ( b )  shows that there is a tendency towards local convection in a system 
with two layers of equal thickness. The L, and w curves for N = 2 never approach the 
homogeneous curve, since even the starting slopes at 6 = 1.0 are markedly different. 
Greater numbera of layers give large-scale convection when 6 is not too large. After 
the transition to local convection, L, is small and decreases with increasing N. The 
small cell width for local convection may be interpreted as a tendency to form near- 
square cells in the active layer, as noted by McKibbin & O’Sullivan (1980, p. 389). 

Similar variation of Rzmin, Lc and CT with 7 when f = 1.0 is shown in figure 13. The 
same transition behaviour as for the previous case is evident. To the right of each 
transition region, the values of RcXrnin become asymptotically constant with increasing 
7 for each N .  

Comparison of figures 12 and 13 show that the anisotropy description is better for 6 
than for 7 - the transition regions for given N in figure 12 lie to the right of those in 
figure 13. The transition values off are approximately twice those of 7 for the same N .  
This is related to the different powers in the ratio Kidi lk: ,  as already mentioned. 

The sufficiency condition for local convection has been included in figures 12  (a) 
and 13(a).  The curves where R, = 4n2 (corresponding to R* = N 2 / ( [ +  (fZ-[)*), 
from (2.5)and(2.9)) areshownasdashedlinesinfigure 12(a).Foragiven N,inequality 
(6.1) is satisfied for f greater than that value (marked with a ring) where the dashed 
line crosses the homogeneous-layer line (representing RPmin = a( 1 + (7/f)h)2. The 
figure confirms that R, < 4772 a t  onset of local convection. 

The dashed curves indicate more, however. The distance between them and the 
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10 1) 

FIGURE 13 (a). Caption on p. 336. 

100 

correct curves are about half as large (relatively, on the log-log scales used) for N = 2 
as for N = 4 , 6 , 8  . . . in the range of local convection. This is not accidental. First, none 
of the lines for R, = 477, are asymptotes for the correct curves - they assume the same 
kinematic boundary conditions as for the asymptotic case (impermeable) but not the 
same thermal boundary conditions. For N = 2 ,  local convection is restricted to  the 
first layer, where one thermal boundary condition is correct. For N 2 4, this is not so, 
since the first layer is not the most active. Accordingly, for N = 2, three out of the 
four boundary conditions are asymptotically correct (referring t o  the case of im- 
permeable, perfectly conducting boundaries with critical local Rayleigh number 
equal to  4772) while for N 2 4 only two out of four conditions are asymptotically correct. 

Similar comments may be applied to figure 13(a) ,  where the dashed lines are the 
curves for R, = 4n2 (corresponding to  R* = N 2 ( q - ( q z - y ) * ) z ) .  B'y comparing the 
upper-bound transition points (rings in figures 12(a)  and 13(a) )  predicted by the 
sufficiency condition, these turn out to  have values about half as large for 7 as for c. 
7. The heat flux 

The mean vertical heat flux is measured by the Nusselt number Nu,, which is 
approximated for slightly supercrit,icd flow by (2.13).  N u  depends on the parameter (T, 
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( b )  

1 10 71 100 

3 
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10 71 100 

FIGURE 13. Variation of RZrnln, L, and corresponding values of u for the case of uniform 
permeability (6  = 1.0), closed top and equal layer depths (T = 0.5). ( a )  R,*,,, ws. 7: ---, 
values of RZ where R, = 47P; (b )  L, vs. 7; (c )  u vs. 7. 

the slope of the graph of N u  vs. R*/R$. For a homogeneous anisotropic layer with a 
closed top the value of u is 2.0 and is independent of and 7, and also of cell width L. 
For a layered system u varies with the configuration and boundary conditions. The 
values of u corresponding to R,X = RZmin, L = L, for the closed-top configurations 
given in figures 12 (a ,  b)  and 13 (a, b )  are shown in figures 12 ( c ) ,  13 ( c ) .  
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The values of cr show the same transition regions as RcXrnin and L,, with a marked 
decrease in value at  the transitions. As [ or 7 becomes very large, the values of cr 
become asymptotically constant. 

It should be noted that the values of cr associated with a local type of convection 
(except for the case 6 = 1.0, N = 2 in figure 13) are much smaller than for large-scale 
convection. The rat,e of heat transfer for slightly supercritical flows is thus greater 
when the motion is large-scale (as noted by McKibbin & O’Sullivan 1981). When local 
convection occurs, there may be almost immobile internal fluid layers where most of 
the heat is to be transported by conduction. This strongly impedes the heat transport 
unless all nearly stagnant layers have large conductivity. I n  large-scale convection, 
nearly stagnant internal layers do not exist. . 

For systems where conductivity is uniform (7 = 1.0) as shown in figure 12, the 
layered-system values of cr are all less than the homogeneous anisotropy value of 2.0. 
The less-permeable layers are constrained to transfer heat mainly by conduction - as 
6 becomes large almost-immobile internal layers appear and the convective heat 
transfer is reduced. 

For the case of uniform permeability ([ = 1*0), shown in figure 13, u may be larger 
than 2.0 for small N .  I n  particular, for N = 2, the less-conductive upper layer has a 
concentration of convection. This combines with the high conductivity of the lower 
layer to produce large heat transfer (and a > 2.0 for large 7). For N = 4 and 7 < 3.2 
convection is reasonably strong in both of the less-conductive layers (see figure 10 
for 7 = 3.0) and u > 2-0. For 7 > 3.2 however the upper layer becomes less active 
and the heat transfer drops, with cr < 2-0. The transition towards local convection 
begins. In  figure 10 the progression as 7 increases for N = 4 can be studied. The case 
7 = 5.0 is interesting as it is just in the middle of the transition region (see figure 13b), 
and the flow in this case is intermediate between large-scale and local convection. As 
7 increases further, local convection appears in the second layer; the uppermost layer 
becomes more and more inactive, leading to small heat transfer. Figure 11 indicates 
that the top layer is the only layer of small conductivity that will be inactivized (for 
N > 2) as 7 increases. Accordingly, the heat-insulating effect of this inactivization 
decreases as the thickness of the uppermost layer decreases (i.e. as N increases). This 
explains why N = 4 has the smallest asymptotic value for cr. 

Existing theory is able to give some information about the heat transport in layered 
porous media for larger supercritical Rayleigh numbers. Results for homogeneous 
anisotropic layers are given by Kvernvold & Tyvand (1979, figure 2). The Nusselt 
number as a function of RIR, depends on the ratio [/7. The effects of anisotropy are 
not great, but Nu is always larger for any value 617 = b, where b < 1, than for 
[/7 = l / b  > 1 (assuming RIR, fixed). This result suggests that, for layered systems, 
layering in conductivity (7 > 1)  causes more rapid growth in heat transport with 
increasing R than does permeability layering ([ > 1). 

8. Conclusions 
Thermal convection in a multilayered porous medium has been investigated, with 

the purpose of comparison with asymptotic limits of homogeneous anisotropy. This 
comparison offers a simplified description of layering, as well as a physical under- 
standing of anisotropy. The case of alternating layers gives good convergence as the 
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number of layers becomes large. Anisotropy models the occurrence of large-scale 
convection only. For a given number of layers, there may be a sudden breakdown of 
this anisotropic modelling a t  the appearance of local convection, which consists 
mainly of flow in single layers, for a local Rayleigh number somewhat below 4 7 ~ ~ .  

From wave theory (Brekhovskikh 1960) it is known that anisotropic modelling of 
layered media accounts for interfacial refraction but not for interfacial reflection 
phenomena. Similarly, anisotropic modelling of convection accounts for interfacial 
refraction of streamlines and/or isotherms, but not for recirculations constrained by 
interfaces. 

The present results indicate that a curved flow in a periodically layered porous 
medium can be modelled in terms of homogeneous anisotropy for most practical 
purposes, provided the length scale of the flow is larger than the layering period. 
Calculations for N = 2 show that anisotropic modelling may be useful also for aperiodic 
layering, provided the flow is of large-scale type. 

The average continuum description is fundamental to the theory of flows through 
porous media (Bear 1972, p. 19). In  a general context, the present model is distin- 
guished as it offers a quantitative analysis of the accuracy of the average continuum 
description. Usually such an analysis is impracticable as it requires calculation of the 
Newtonian fluid flow in the irregular pores. The difference here is the existence of two 
distinct levels of average continuum description: the lower level of layering and the 
higher level of anisotropy. An analysis of the accuracy of the higher-level description 
may thus be performed in terms of the lower-level description. 
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